Effect of passive shoulder exoskeleton support during working with arms over shoulder level

Author:

Brunner AnninaORCID,van Sluijs RachelORCID,Luder Tobias,Camichel Cherilyn,Kos Melanie,Bee Dario,Bartenbach Volker,Lambercy Olivier

Abstract

Abstract Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% (p < 0.001) in the Trapezius Descendens and up to 64% (p < 0.001) in the Deltoideusmedius. Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.

Publisher

Cambridge University Press (CUP)

Subject

Human-Computer Interaction,Rehabilitation,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3