Data-efficient human walking speed intent identification

Author:

Higgins Taylor M.ORCID,Bresingham Kaitlyn J.,Schmiedeler James P.,Wensing Patrick M.

Abstract

Abstract The ability to accurately identify human gait intent is a challenge relevant to the success of many applications in robotics, including, but not limited to, assistive devices. Most existing intent identification approaches, however, are either sensor-specific or use a pattern-recognition approach that requires large amounts of training data. This paper introduces a real-time walking speed intent identification algorithm based on the Mahalanobis distance that requires minimal training data. This data efficiency is enabled by making the simplifying assumption that each time step of walking data is independent of all other time steps. The accuracy of the algorithm was analyzed through human-subject experiments that were conducted using controlled walking speed changes on a treadmill. Experimental results confirm that the model used for intent identification converges quickly (within 5 min of training data). On average, the algorithm successfully detected the change in desired walking speed within one gait cycle and had a maximum of 87% accuracy at responding with the correct intent category of speed up, slow down, or no change. The findings also show that the accuracy of the algorithm improves with the magnitude of the speed change, while speed increases were more easily detected than speed decreases.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Human-Computer Interaction,Rehabilitation,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3