Uncertainty quantification and confidence intervals for naive rare-event estimators

Author:

Bai Yuanlu,Lam Henry

Abstract

Abstract We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo or collected data. Unlike using variance reduction techniques, this naive estimator does not have an a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges which, coupled with the availability of computation or data collection power, motivate the use of such a naive estimator. In this paper we study the uncertainty quantification, namely the construction, coverage validity, and tightness of confidence intervals, for rare-event probabilities using only sample proportions. In addition to the known normality, Wilson, and exact intervals, we investigate and compare them with two new intervals derived from Chernoff’s inequality and the Berry–Esseen theorem. Moreover, we generalize our results to the natural situation where sampling stops by reaching a target number of rare-event hits. Our findings show that the normality and Wilson intervals are not always valid, but they are close to the newly developed valid intervals in terms of half-width. In contrast, the exact interval is conservative, but safely guarantees the attainment of the nominal confidence level. Our new intervals, while being more conservative than the exact interval, provide useful insights into understanding the tightness of the considered intervals.

Publisher

Cambridge University Press (CUP)

Reference45 articles.

1. RESTART: a straightforward method for fast simulation of rare events

2. Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models

3. [2] Arief, M. et al. (2021). Deep probabilistic accelerated evaluation: A robust certifiable rare-event simulation methodology for black-box safety-critical systems. In International Conference on Artificial Intelligence and Statistics, eds A. Banerjee and K. Fukumizu. Proceedings of Machine Learning Research, pp. 595–603.

4. Self-normalized limit theorems: A survey

5. On the Error of Naive Rare-Event Monte Carlo Estimator

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3