Multiple-Choice Tests: Polytomous IRT Models Misestimate Item Information

Author:

García-Pérez Miguel A.

Abstract

AbstractLikert-type items and polytomous models are preferred over yes–no items and dichotomous models for the measurement of attitudes, because a broader range of response categories provides superior item and test information functions. Yet, for ability assessment with multiple-choice tests, the dichotomous three-parameter logistic model (3PLM) is often chosen. Because multiple-choice responses are polytomous before they are categorized as correct or incorrect, a polytomous characterization might render more efficient tests. Early studies suggested that the nominal response model (NRM) is advantageous in this respect. We investigate the reasons for those results and the outcomes of a polytomous characterization based on the multiple-choice model (MCM). An empirical data set is used to compare polytomous (NRM and MCM) and dichotomous (3PLM) characterizations of a test. The results revealed superior item and test information functions from polytomous models. Yet, close inspection suggests that these outcomes are artifactual and two simulation studies confirmed this point. These studies revealed a structural inadequacy of the NRM for multiple-choice items and that the MCM characterization outperforms the 3PLM characterization only when distractor endorsement frequencies vary non-monotonically with ability, although this feature is rarely observed in empirical data sets.

Publisher

Cambridge University Press (CUP)

Subject

Linguistics and Language,General Psychology,Language and Linguistics

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3