Abstract
AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. [14] Lachlan A. H. , Homogeneous structures , Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, California, 1986), American Mathematical Society, Providence, RI, 1987, pp. 314–321.
2. A family of countable homogeneous graphs
3. Divisibility of countable metric spaces
4. On the divisibility of homogeneous hypergraphs
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Products of Classes of Finite Structures;Notre Dame Journal of Formal Logic;2023-11-01
2. Infinite lexicographic products;Annals of Pure and Applied Logic;2022-01