Regular periodic decompositions for topologically transitive maps

Author:

BANKS JOHN

Abstract

One may often decompose the domain of a topologically transitive map into finitely many regular closed pieces with nowhere dense overlap in such a way that these pieces map into one another in a periodic fashion. We call decompositions of this kind regular periodic decompositions and refer to the number of pieces as the length of the decomposition. If $f$ is topologically transitive but $f^{n}$ is not, then $f$ has a regular periodic decomposition of some length dividing $n$. Although a decomposition of a given length is unique, a map may have many decompositions of different lengths. The set of lengths of decompositions of a given map is an ideal in the lattice of natural numbers ordered by divisibility, which we call the decomposition ideal of $f$. Every ideal in this lattice arises as a decomposition ideal of some map. Decomposition ideals of Cartesian products of transitive maps are discussed and used to develop various examples. Results are obtained concerning the implications of local connectedness for decompositions. We conclude with a comprehensive analysis of the possible decomposition ideals for maps on 1-manifolds.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3