Ergodic transformations conjugate to their inverses by involutions

Author:

Goodson Geoffrey R.,del Junco Andrés,Lemańczyk Mariusz,Rudolph Daniel J.

Abstract

AbstractLetTbe an ergodic automorphism defined on a standard Borel probability space for whichTandT−1are isomorphic. We investigate the form of the conjugating automorphism. It is well known that ifTis ergodic having a discrete spectrum andSis the conjugation betweenTandT−1, i.e.SsatisfiesTS=ST−1thenS2=Ithe identity automorphism. We show that this result remains true under the weaker assumption thatThas a simple spectrum. IfThas the weak closure property and is isomorphic to its inverse, it is shown that the conjugationSsatisfiesS4=I. Finally, we construct an example to show that the conjugation need not be an involution in this case. The example we construct, in addition to having the weak closure property, is of rank two, rigid and simple for all orders with a singular spectrum of multiplicity equal to two.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. The metrical structure of some Gaussian processes;Thouvenot;Proc. Conf. Ergodic Theory and Related Topics II. Georgenthal, Teubner-Texte zur Math.,1986

2. A general condition for lifting theorems

3. [19] Queffelec M. . Substitution Dynamical Systems, Spectral Analysis. (Lecture Notes in Mathematics 1294), 1987.

4. On canonical factors of ergodic dynamical systems;Newton;J. Lond. Math. Soc.,1978

5. Toeplitz-ℤ2 extensions;Lemańczyk;Ann. Inst. Henri Poincaŕe.,1988

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Number-theoretic positive entropy shifts with small centralizer and large normalizer;Ergodic Theory and Dynamical Systems;2020-11-04

2. Reversing and extended symmetries of shift spaces;Discrete & Continuous Dynamical Systems - A;2018

3. A Brief Guide to Reversing and Extended Symmetries of Dynamical Systems;Lecture Notes in Mathematics;2018

4. Orbit growth for algebraic flip systems;Ergodic Theory and Dynamical Systems;2014-08-07

5. Non-reversibility and self-joinings of higher orders for ergodic flows;Journal d'Analyse Mathématique;2014-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3