Transitivity of codimension-one Anosov actions of ℝk on closed manifolds

Author:

BARBOT THIERRY,MAQUERA CARLOS

Abstract

AbstractWe consider Anosov actions of ℝk, k≥2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of ℝk has dimension one. We prove that if the ambient manifold has dimension greater than k+2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Codimension one Anosov flows;Verjovsky;Bol. Soc. Mat. Mexicana (2),1974

2. Anosov flows on infra-homogeneous spaces

3. Open Manifolds Foliated by Planes

4. Ergodicity of Anosov actions

5. [23] Simic S. N. . Volume preserving codimension one Anosov flows in dimensions greater than three are suspensions. ArXiv math.DS/0508024.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact foliations and generalised Weinstein conjectures;Annals of Global Analysis and Geometry;2024-05-09

2. On codimension one special Anosov endomorphisms;Dynamical Systems;2023-02-05

3. Hyperbolic Flows;ZUR LECT ADV MATH;2019-12-10

4. The centralizer of Komuro-expansive flows and expansive $${{\mathbb {R}}}^d$$ R d actions;Mathematische Zeitschrift;2017-12-01

5. Nil-Anosov actions;Mathematische Zeitschrift;2017-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3