Abstract
AbstractWe analyse isospectral sets of potentials associated to a given ‘generalized periodic’ boundary condition in SL(2, R) for the Sturm-Liouville equation on the unit interval. This is done by first studying the larger manifold M of all pairs of boundary conditions and potentials with a given spectrum and characterizing the critical points of the map from M to the trace a + d Isospectral sets appear as slices of M whose geometry is determined by the critical point structure of the trace function. This paper completes the classification of isospectral sets for all real self-adjoint boundary conditions.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献