Author:
BANYAGA AUGUSTIN,HURTUBISE DAVID E.
Abstract
AbstractLet f:M→ℝ be a Morse–Bott function on a compact smooth finite-dimensional manifold M. The polynomial Morse inequalities and an explicit perturbation of f defined using Morse functions fj on the critical submanifolds Cj of f show immediately that MBt(f)=Pt(M)+(1+t)R(t), where MBt(f) is the Morse–Bott polynomial of f and Pt(M) is the Poincaré polynomial of M. We prove that R(t) is a polynomial with non-negative integer coefficients by showing that the number of gradient flow lines of the perturbation of f between two critical points p,q∈Cj of relative index one coincides with the number of gradient flow lines between p and q of the Morse function fj. This leads to a relationship between the kernels of the Morse–Smale–Witten boundary operators associated to the Morse functions fj and the perturbation of f. This method works when M and all the critical submanifolds are oriented or when ℤ2 coefficients are used.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献