Author:
Krupa Martin,Melbourne Ian
Abstract
AbstractSystems possessing symmetries often admit heteroclinic cycles that persist under perturbations that respect the symmetry. The asymptotic stability of such cycles has previously been studied on an ad hoc basis by many authors. Sufficient conditions, but usually not necessary conditions, for the stability of these cycles have been obtained via a variety of different techniques.We begin a systematic investigation into the asymptotic stability of such cycles. A general sufficient condition for asymptotic stability is obtained, together with algebraic criteria for deciding when this condition is also necessary. These criteria are always satisfied in ℝ3 and often satisfied in higher dimensions. We end by applying our results to several higher-dimensional examples that occur in mode interactions with O(2) symmetry.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献