Strong stochastic stability for non-uniformly expanding maps

Author:

ALVES JOSÉ F.,VILARINHO HELDER

Abstract

AbstractWe consider random perturbations of discrete-time dynamical systems. We give sufficient conditions for the stochastic stability of certain classes of maps, in a strong sense. This improves the main result in Alves and Araújo [Random perturbations of non-uniformly expanding maps. Astérisque 286 (2003), 25–62], where the stochastic stability in the $\mathrm {weak}^*$ topology was proved. Here, under slightly weaker assumptions on the random perturbations, we obtain a stronger version of stochastic stability: convergence of the density of the stationary measure to the density of the Sinai–Ruelle–Bowen (SRB) measure of the unperturbed system in the $L^1$-norm. As an application of our results, we obtain strong stochastic stability for two classes of non-uniformly expanding maps. The first one is an open class of local diffeomorphisms introduced in Alves, Bonatti and Viana [SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140 (2000), 351–398] and the second one is the class of Viana maps.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic stability for partially hyperbolic diffeomorphisms with mostly expanding and mostly contracting centers;Stochastics and Dynamics;2023-06

2. Quenched decay of correlations for nonuniformly hyperbolic random maps with an ergodic driving system;Nonlinearity;2023-05-16

3. How Does Noise Induce Order?;Journal of Statistical Physics;2022-11-28

4. Random Young towers and quenched limit laws;Ergodic Theory and Dynamical Systems;2022-02-03

5. On the timescale at which statistical stability breaks down;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3