Author:
DUMORTIER FREDDY,KOKUBU HIROSHI
Abstract
We study the most generic nilpotent singularity of a vector field in ${\mathbb R}^3$ which is equivariant under reflection with respect to a line, say the $z$-axis. We prove the existence of eight equivalence classes for $C^0$-equivalence, all determined by the 2-jet. We also show that in certain cases, the ${\mathbb Z}_2$-equivariant unfoldings generically contain codimension one heteroclinic cycles which are comparable to the Shil'nikov-type homoclinic cycle in non-equivariant unfoldings. The heteroclinic cycles are accompanied by infinitely many horseshoes and also have a reasonable possibility of generating suspensions of Hénon-like attractors, and even Lorenz-like attractors.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献