Author:
Cornelis Eric,Wojtkowski Maciej
Abstract
AbstractWe formulate sufficient conditions under which, for a finite subset of SL (2, ℝ), the maximal Liapunov exponent is positive. These conditions are based on the notion of compatible hyperbolicity. We then give an analytical formulation of such a condition and we apply this criterion to prove mixing properties of a particular transformation of the two-dimensional torus.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference5 articles.
1. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY
2. [1] Cornelis E. . Sur les propriátás ergodiques de quelques transformations lineaires par morceaux du tore. Master's thesis, F.N.D.P. Namur, 1982.
3. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems;Oseledec;Trans. Moscow Math. Soc.,1968
4. On the ergodic properties of piecewise linear perturbations of the twist map
5. A model problem with the coexistence of stochastic and integrable behaviour
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献