Abstract
AbstractThe aim of the present paper is to reveal an unforeseen link between the classical vanishing theorems of Matsushima and Weil, on the one hand, and rigidity of the Weyl chamber flow, a dynamical system arising from a higher-rank non-compact Lie group, on the other. The connection is established via ‘transverse extension theorems’: roughly speaking, they claim that a tangential 1-form of the orbit foliation of the Weyl chamber flow that is tangentially closed (and satisfies a certain mild additional condition) can be extended to a closed 1-form on the whole space in a canonical manner. In particular, infinitesimal rigidity of the orbit foliation of the Weyl chamber flow is proved as an application.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献