Convex dynamics with constant input

Author:

ADLER R. L.,NOWICKI T.,ŚWIRSZCZ G.,TRESSER C.

Abstract

AbstractIn Adler et al [Convex dynamics and applications. Ergod. Th. & Dynam. Sys.25 (2005), 321–352] certain piecewise linear maps were defined in terms of a convex polytope. When the convex polytope is a simplex, the resulting map has a dual nature. On one hand it is defined on ℝN and acts as a piecewise translation. On the other it can be viewed as a translation on the N-torus. What relates its two roles? A natural answer would be that there exists an invariant fundamental set into which all orbits under piecewise translation eventually enter. We prove this for N=1 and for acute and right triangles—i.e. non-obtuse triangles. We leave open the case of obtuse triangles and higher-dimensional simplices. Another question not treated is the connectivity of the invariant fundamental sets which arise.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. Convex dynamics and applications

2. Bounding the errors for convex dynamics on one or more polytopes

3. [2] Adler R. , Nowicki T. , Świrszcz G. , Tresser C. and Winograd S. . Convex dynamics: the lattices for the sub-tiles. (2008) in preparation.

4. Ergodic dynamics in sigma–delta quantization: tiling invariant sets and spectral analysis of error

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-order low-bit Sigma-Delta quantization for fusion frames;Analysis and Applications;2020-10-19

2. On the geometry and regularity of invariant sets of piecewise-affine automorphisms on the Euclidean space;Ergodic Theory and Dynamical Systems;2019-01-07

3. Error diffusion on acute simplices: invariant tiles;Israel Journal of Mathematics;2017-07-11

4. Distributed Noise-Shaping Quantization: II. Classical Frames;Excursions in Harmonic Analysis, Volume 5;2017

5. Sigma-Delta Quantization for Fusion Frames and Distributed Sensor Networks;Frames and Other Bases in Abstract and Function Spaces;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3