Author:
AMBROLADZE AMIRAN,WALLIN HANS
Abstract
Let $Y_1, Y_2, \dots$ be a sequence of independent random maps, identically distributed with respect to a probability measure $\mu$ on $SL(2,R)$. A (deep) theorem of Furstenberg gives abstract conditions under which for almost every such sequence the orbit of a non-zero initial point in $R^2$ tends to infinity exponentially fast. In the present paper we translate this statement into the set-up of Möbius transformations on the upper half-plane and provide a very explicit way to determine whether or not the required conditions are satisfied.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献