Author:
BLANCHARD F,HOST B,MAASS A
Abstract
In a topological dynamical system $(X,T)$ the complexity function of a cover ${\cal C}$ is the minimal cardinality of a sub-cover of $\bigvee_{i=0}^n T^{-i}{\cal C}$. It is shown that equicontinuous transformations are exactly those such that any open cover has bounded complexity. Call scattering a system such that any finite cover by non-dense open sets has unbounded complexity, and call 2-scattering a system such that any such 2-set cover has unbounded complexity: then all weakly mixing systems are scattering and all 2-scattering systems are totally transitive. Conversely, any system that is not 2-scattering has covers with complexity at most $n+1$. Scattering systems are characterized topologically as those such that their cartesian product with any minimal system is transitive; they are consequently disjoint from all minimal distal systems. Finally, defining $(x,y)$, $x\ne y$, to be a complexity pair if any cover by two non-trivial closed sets separating $x$ from $y$ has unbounded complexity, we prove that 2-scattering systems are disjoint from minimal isometries; that in the invertible case the complexity relation is contained in the regionally proximal relation and, when further assuming minimality, coincides with it up to the diagonal.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献