An invariant for rigid rank-1 transformations

Author:

Friedman Nathaniel,Gabriel Patrick,King Jonathan

Abstract

AbstractAssociated to a rigid rank-1 transformationTis a semigroup ℒ(T) of natural numbers, closed under factors. If ℒ(S) ≠ ℒ(T) thenSandTcannot be copied isomorphically onto the same space so that they commute. If ℒ(S) ⊅ ℒ(T) thenScannot be a factor ofT. For each semigroupLwe construct a weak mixingSsuch that ℒ(S) =L. TheSwhere ℒ(S) = {l}, despite having uncountable commutant, has no roots.Preceding and preparing for this example are two others: An uncountable abelian groupGof weak mixing transformations for which any two (non-identity) members have identical self-joinings of all orders and powers. The second example, to contrast with the rank-1 property that the weak essential commutant must be the trivial group, is of a rank-2 transformation with uncountable weak essential commutant.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. On ergodic actions whose self-joinings are graphs;Junco;Ergod. Th. and Dynam. Sys.,1987

2. [4] King J. L. . Joining-rank and the structure of finite rank mixing transformations. Journal d'Analyse.

3. A rank one, rigid, prime, simple map;Junco;Ergod. Th. and Dynam. Sys.,1987

4. The commutant is the weak closure of the powers, for rank-1 transformations

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem;Siberian Mathematical Journal;2022-03

2. Tower multiplexing and slow weak mixing;Colloquium Mathematicum;2015

3. ON THE CENTRALIZER OF RIGID TRANSFORMATIONS;Russian Academy of Sciences. Sbornik Mathematics;1993-02-28

4. Ergodic properties where order 4 implies infinite order;Israel Journal of Mathematics;1992-06

5. A canonical structure theorem for finite joining-rank maps;Journal d'Analyse Mathématique;1991-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3