Author:
CALEGARI DANNY,FUJIWARA KOJI
Abstract
AbstractA function on a discrete group is weakly combable if its discrete derivative with respect to a combing can be calculated by a finite-state automaton. A weakly combable function is bicombable if it is Lipschitz in both the left- and right-invariant word metrics. Examples of bicombable functions on word-hyperbolic groups include:(1)homomorphisms to ℤ;(2)word length with respect to a finite generating set;(3)most known explicit constructions of quasimorphisms (e.g. the Epstein–Fujiwara counting quasimorphisms).We show that bicombable functions on word-hyperbolic groups satisfy acentral limit theorem: if$\overline {\phi }_n$is the value of ϕ on a random element of word lengthn(in a certain sense), there areEandσfor which there is convergence in the sense of distribution$n^{-1/2}(\overline {\phi }_n - nE) \to N(0,\sigma )$, whereN(0,σ) denotes the normal distribution with standard deviationσ. As a corollary, we show that ifS1andS2are any two finite generating sets forG, there is an algebraic numberλ1,2depending onS1andS2such that almost every word of lengthnin theS1metric has word lengthn⋅λ1,2in theS2metric, with error of size$O(\sqrt {n})$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference25 articles.
1. Local limit theorems for free groups
2. [24] Sarnak P. . Private communication, 2008.
3. [22] Rivin I. . Growth in free groups (and other stories). Preprint, 1999, math.CO/9911076.
4. Hairdressing in groups: a survey of combings and formal languages
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献