Regularity of invariant graphs for forced systems

Author:

STARK JAROSLAV

Abstract

Many applications of nonlinear dynamics involve forced systems. We consider the case where for a fixed input the driven system is contracting; this is for instance the situation in certain classes of filters, and in the study of synchronization. When this contraction is uniform, it can easily be shown that there exists a globally attracting invariant set which is the graph of a function from the driving state space to the driven state space; this is a special case of the well known concept of an inertial manifold for more general systems. If the driving state space is a manifold and the contraction is sufficiently strong this invariant set is a normally hyperbolic manifold, and hence smooth. The aim of this paper is to extend this result in two directions: firstly, where we only have uniform contraction for a compact invariant set of input states, and secondly where the contraction rates are non-uniform (and hence defined by Liapunov exponents and analogous quantities). In both cases the invariant graph is only defined over closed subsets of the input space, and hence we need to define an appropriate notion of smoothness for such functions. This is done in terms of the Whitney extension theorem: a function is considered Whitney smooth if it satisfies the conditions of this theorem and hence can be extended to a smooth function of the whole input space.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalised synchronisations, embeddings, and approximations for continuous time reservoir computers;Physica D: Nonlinear Phenomena;2024-02

2. Learning Theory for Dynamical Systems;SIAM Journal on Applied Dynamical Systems;2023-08-08

3. Koopman-Theoretic Modeling of Quasiperiodically Driven Systems: Example of Signalized Traffic Corridor;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2023-07

4. INVARIANT GRAPH AND RANDOM BONY ATTRACTORS;J KOREAN MATH SOC;2023

5. An Open Set of Skew Products with Invariant Multi-graphs and Bony Multi-graphs;Qualitative Theory of Dynamical Systems;2022-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3