Author:
FANG CHUN,HUANG WEN,YI YINGFEI,ZHANG PENGFEI
Abstract
AbstractWe study the dimensions of stable sets and scrambled sets of a dynamical system with positive finite entropy. We show that there is a measure-theoretically ‘large’ set containing points whose sets of ‘hyperbolic points’ (i.e. points lying in the intersections of the closures of the stable and unstable sets) admit positive Bowen dimension entropies; under the continuum hypothesis, this set also contains a scrambled set with positive Bowen dimension entropies. For several kinds of specific invertible dynamical systems, the lower bounds of the Hausdorff dimension of these sets are estimated. In particular, for a diffeomorphism on a smooth Riemannian manifold with positive entropy, such a lower bound is given in terms of the metric entropy and Lyapunov exponent.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献