Renewal-type limit theorem for the Gauss map and continued fractions

Author:

SINAI YAKOV G.,ULCIGRAI CORINNA

Abstract

AbstractIn this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. [4] Kesseböhmer M. and Slassi M. . A distributional limit law for continued fraction digit sums. Math. Nach. to appear. arXiv:math.NT/0509559, 2007.

2. Limiting behaviour of large Frobenius numbers;Bourgain;Uspekhi. Mat. Nauk.,2007

3. Topics in Ergodic Theory

4. Weak asymptotics for the numbers of solutions of diophantine problems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral disjointness of rescalings of some surface flows;Journal of the London Mathematical Society;2020-10-20

2. Ya.G. Sinai’s Work on Number Theory;The Abel Prize;2019

3. Convergence of ergodic averages for many group rotations;Ergodic Theory and Dynamical Systems;2015-06-01

4. The Abel Prize award to Ya.G. Sinai;Russian Mathematical Surveys;2014-10-31

5. On certain statistical properties of continued fractions with even and with odd partial quotients;Acta Arithmetica;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3