Author:
CHAZOTTES J.-R.,COLLET P.
Abstract
AbstractWe study the number of visits to balls Br(x), up to time t/μ(Br(x)), for a class of non-uniformly hyperbolic dynamical systems, where μ is the Sinai–Ruelle–Bowen measure. Outside a set of ‘bad’ centers x, we prove that this number is approximately Poissonnian with a controlled error term. In particular, when r→0, we get convergence to the Poisson law for a set of centers of μ-measure one. Our theorem applies for instance to the Hénon attractor and, more generally, to systems modelled by a Young tower whose return-time function has an exponential tail and with one-dimensional unstable manifolds. Along the way, we prove an abstract Poisson approximation result of independent interest.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献