Abstract
AbstractA non-additive version of the thermodynamic formalism is developed. This allows us to obtain lower and upper bounds for the dimension of a broad class of Cantor-like sets. These are constructed with a decreasing sequence of closed sets that may satisfy no asymptotic behavior. Moreover, they can be coded by arbitrary symbolic dynamics, and the geometry of the construction may depend on all the symbolic past. Applications include estimates of dimension for hyperbolic sets of maps that need not be differentiable.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献