Abstract
AbstractWe show that if a homeomorphism f of the torus, isotopic to the identity, has three or more periodic orbits with non-collinear rotation vectors, then it has positive topological entropy. Furthermore, for each point ρ of the convex hull Δ of their rotation vectors, there is an orbit of rotation vector ρ, for each rational point p/q, p ∈ ℤ2, q ∈ ℕ, in the interior of Δ, there is a periodic orbit of rotation vector p / q, and for every compact connected subset C of Δ there is an orbit whose rotation set is C. Finally, we prove that f has ‘toroidal chaos’.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献