Existence and convergence properties of physical measures for certain dynamical systems with holes

Author:

BRUIN HENK,DEMERS MARK,MELBOURNE IAN

Abstract

AbstractWe study two classes of dynamical systems with holes: expanding maps of the interval and Collet–Eckmann maps with singularities. In both cases, we prove that there is a natural absolutely continuous conditionally invariant measure μ (a.c.c.i.m.) with the physical property that strictly positive Hölder continuous functions converge to the density of μ under the renormalized dynamics of the system. In addition, we construct an invariant measure ν, supported on the Cantor set of points that never escape from the system, that is ergodic and enjoys exponential decay of correlations for Hölder observables. We show that ν satisfies an equilibrium principle which implies that the escape rate formula, familiar to the thermodynamic formalism, holds outside the usual setting. In particular, it holds for Collet–Eckmann maps with holes, which are not uniformly hyperbolic and do not admit a finite Markov partition. We use a general framework of Young towers with holes and first prove results about the a.c.c.i.m. and the invariant measure on the tower. Then we show how to transfer results to the original dynamical system. This approach can be expected to generalize to other dynamical systems than the two above classes.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pressure and Equilibrium States in Ergodic Theory;Encyclopedia of Complexity and Systems Science Series;2023

2. Pressure and Equilibrium States in Ergodic Theory;Encyclopedia of Complexity and Systems Science;2021

3. Asymptotic escape rates and limiting distributions for multimodal maps;Ergodic Theory and Dynamical Systems;2020-03-09

4. The k-Transformation on an Interval with a Hole;Qualitative Theory of Dynamical Systems;2020-01-31

5. Pressure and escape rates for random subshifts of finite type;Dynamical Systems and Random Processes;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3