Author:
BRUIN HENK,DEMERS MARK,MELBOURNE IAN
Abstract
AbstractWe study two classes of dynamical systems with holes: expanding maps of the interval and Collet–Eckmann maps with singularities. In both cases, we prove that there is a natural absolutely continuous conditionally invariant measure μ (a.c.c.i.m.) with the physical property that strictly positive Hölder continuous functions converge to the density of μ under the renormalized dynamics of the system. In addition, we construct an invariant measure ν, supported on the Cantor set of points that never escape from the system, that is ergodic and enjoys exponential decay of correlations for Hölder observables. We show that ν satisfies an equilibrium principle which implies that the escape rate formula, familiar to the thermodynamic formalism, holds outside the usual setting. In particular, it holds for Collet–Eckmann maps with holes, which are not uniformly hyperbolic and do not admit a finite Markov partition. We use a general framework of Young towers with holes and first prove results about the a.c.c.i.m. and the invariant measure on the tower. Then we show how to transfer results to the original dynamical system. This approach can be expected to generalize to other dynamical systems than the two above classes.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献