Hyperbolic behaviour of geodesic flows on manifolds with no focal points

Author:

Burns Keith

Abstract

AbstractIt is shown that the unit tangent bundle of a compact uniform visibility manifold with no focal points contains a subset of positive Liouville measure on which all the characteristic exponents of the geodesic flow (except in the flow direction) are non-zero. This completes Pesin's proof that the geodesic flow of such a manifold is Bernoulli.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Stabilitätsverhalten des geodätischen Flusses riemannscher Mannigfaltigkeiten;Eschenburg;Bonner Mathematische Schriften

2. When is a geodesic flow of Anosov type? I

3. Visibility manifolds

4. Geodesic flows on negatively curved manifolds. II

5. Geodesic flow in certain manifolds without conjugate points

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Properties of equilibrium states for geodesic flows over manifolds without focal points;Advances in Mathematics;2021-03

2. Unique equilibrium states for geodesic flows over surfaces without focal points;Nonlinearity;2020-02-05

3. Open problems and questions about geodesics;Ergodic Theory and Dynamical Systems;2019-12-06

4. Geodesic Flows Modelled by Expansive Flows;Proceedings of the Edinburgh Mathematical Society;2018-08-28

5. Ergodic geometry for non-elementary rank one manifolds;Discrete and Continuous Dynamical Systems;2016-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3