Abstract
AbstractFor each d ≥ 2 there exists a polynomial p with real coefficients such that the associated Newton function z–[p(z)/p′(z)] has 2d–2 distinct attracting periodic orbits in the complex plane. According to a theorem of G. Julia, this is the maximal number of attracting orbits that any rational function of degree d can possess.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference15 articles.
1. Uber das Newtonsche Verfahren zur Annaherung von wurzeln algebraischen Gleichungen;Barna;Publ. Math. Debrecen.,1951
2. Uber die Divergenzpunkte des Newtonschen Verfahrens zur bestimmung von wurzeln algebraischen Gleichungen:;II. Publ. Math.,1956
3. On the iteration of a rational function: Computer experiments with Newton's method
4. Complex analytic dynamics on the Riemann sphere
5. Newton’s Algorithm and Chaotic Dynamical Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献