Advances in Pulsed-Laser Atom Probe: Instrument and Specimen Design for Optimum Performance

Author:

Bunton Joseph H.,Olson Jesse D.,Lenz Daniel R.,Kelly Thomas F.

Abstract

The performance of the pulsed-laser atom probe can be limited by both instrument and specimen factors. The experiments described in this article were designed to identify these factors so as to provide direction for further instrument and specimen development. Good agreement between voltage-pulsed and laser-pulsed data is found when the effective pulse fraction is less than 0.2 for pulsed-laser mode. Under the conditions reported in this article, the thermal tails of the peaks in the mass spectra did not show any significant change when produced with either a 10-ps or a 120-fs pulsed-laser source. Mass resolving power generally improves as the laser spot size and laser wavelength are decreased and as the specimen tip radius, specimen taper angle, and thermal diffusivity of the specimen material are increased. However, it is shown that two of the materials used in this study, aluminum and stainless steel, depend on these factors differently. A one-dimensional heat flow model is explored to explain these differences. The model correctly predicts the behavior of the aluminum samples, but breaks down for the stainless steel samples when the tip radius is large. A more accurate three-dimensional model is needed to overcome these discrepancies.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3