Advanced Identification and Quantification of In-Bearing Minerals by Scanning Electron Microscope-Based Image Analysis

Author:

Bachmann Kai,Frenzel Max,Krause Joachim,Gutzmer Jens

Abstract

AbstractThe identification and accurate characterization of discrete grains of rare minerals in sulfide base-metal ores is usually a cumbersome procedure due to the small grain sizes (typically <10 μm) and complex mineral assemblages in the material. In this article, a new strategy for finding and identifying indium minerals, and quantifying their composition and abundance is presented, making use of mineral liberation analysis (MLA) and electron probe microanalysis (EPMA). The method was successfully applied to polymetallic massive sulfide ores from the Neves-Corvo deposit in Portugal. The presence of roquesite and sakuraiite could be systematically detected, their concentration quantified by MLA measurements, and their identity later confirmed by EPMA analyses. Based on these results, an almost complete indium deportment could be obtained for the studied samples. This validates the approach taken, combining automated mineralogy data with electron microprobe analysis. A similar approach could be used to find minerals of other common minor and trace elements in complex base-metal sulfide ores, for example Se, Ge, Sb, or Ag, thus permitting the targeted development of resource technologies suitable for by-product recovery.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference19 articles.

1. Carvalho J.R.S. , Fernandes A.S. , Moreira B.B. , Pinto A.M.M. , Relvas J.M.R.S. , Pacheco N. , Pinto F. & Fonseca R. (2013). Hydrothermal alteration and ore mineralogy at the Lombador massive sulphide orebody, Neves Corvo, Portugal: An on-going study. In Proceedings of the 12th SGA Biennial Meeting: “Mineral Deposits Research for a High-Tech World”, Jonsson, E. (Ed.), Uppsala, Sweden, pp. 514–517.

2. Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): a multidisciplinary study

3. Indium in cassiterite and ores of tin deposits

4. Sakuraiite; chemical composition and extent of (Zn, Fe)In-FOR-CuSn substitution;Shimizu;Can Mineral,1986

5. Mineralogical distribution of some minor and trace elements during a laboratory flotation processing of Neves-Corvo ore (Portugal)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3