Comparative Study of Nanoscale Surface Structures of Calcite Microcrystals Using FE-SEM, AFM, and TEM

Author:

Chien Yung-Ching,Mucci Alfonso,Paquette Jeanne,Sears S. Kelly,Vali Hojatollah

Abstract

The bulk morphology and surface features that developed upon precipitation on micrometer-size calcite powders and millimeter-size cleavage fragments were imaged by three different microscopic techniques: field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) of Pt-C replicas, and atomic force microscopy (AFM). Each technique can resolve some nanoscale surface features, but they offer different ranges of magnification and dimensional resolutions. Because sample preparation and imaging is not constrained by crystal orientation, FE-SEM and TEM of Pt-C replicas are best suited to image the overall morphology of microcrystals. However, owing to the decoration effect of Pt-C on the crystal faces, TEM of Pt-C replicas is superior at resolving nanoscale surface structures, including the development of new faces and the different microtopography among nonequivalent faces in microcrystals, which cannot be revealed by FE-SEM. In conjunction with SEM, Pt-C replica provides the evidence that crystals grow in diverse and face-specific modes. The TEM imaging of Pt-C replicas has nanoscale resolution comparable to AFM. AFM yielded quantitative information (e.g., crystallographic orientation and height of steps) of microtopographic features. In contrast to Pt-C replicas and SEM providing three-dimensional images of the crystals, AFM can only image one individual cleavage or flat surface at a time.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3