Author:
Pope Robert K.,Daulton Tyrone L.,Ray Richard I.,Little Brenda J.
Abstract
Microbiologically influenced corrosion (MIC) is of wide concern in marine and non-marine environments. Biofilms and corrosion products associated with microorganisms cause numerous problems in aqueous environments, such as increased fluid frictional resistance, reduced heat transfer, and many types of corrosion, all of which can lead to failure of materials. Corrosion of metals has been extensively examined using TEM, but examination of MIC with TEM has only just begun (Blunn, 1986; Chio, 1996). Previous studies examining microbial colonization of copper surfaces and distribution throughout corrosion products demonstrate copper immobilization by bacterial biofilms (Blunn, 1987). In the current study, Pseudomonasputida attachment to corroding iron particles was examined in a sealed environmental cell in a JEOL 3010 scanning transmission electron microscope (STEM).Iron filings were produced from carbon steel (C1010) using 600 grit sandpaper, collected with a teflon coated magnet, degreased in acetone and sterilized in ethanol. Filings were incubated in distilled water until corrosion was visible under a dissecting microscope.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. This work was performed under Program Element 0601153N, NRL Contribution Number NRL/BA/7303-99-0002. Robert K. Pope was supported by a CORE/NRL Postdoctoral Fellowship
2. Environmental scanning electron microscopy investigations of biodeterioration
3. Structure of Wet Specimens in Electron Microscopy
4. Blunn, G. , and Gareth-Jones, E.B. . Immobilization of Copper by Bacteria in Primary Films on Copper and Copper-Nickel Alloys.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献