Developing and Evaluating Deep Neural Network-Based Denoising for Nanoparticle TEM Images with Ultra-Low Signal-to-Noise

Author:

Vincent Joshua L.ORCID,Manzorro Ramon,Mohan Sreyas,Tang Binh,Sheth Dev Y.,Simoncelli Eero P.,Matteson David S.,Fernandez-Granda Carlos,Crozier Peter A.

Abstract

A deep convolutional neural network has been developed to denoise atomic-resolution transmission electron microscope image datasets of nanoparticles acquired using direct electron counting detectors, for applications where the image signal is severely limited by shot noise. The network was applied to a model system of CeO2-supported Pt nanoparticles. We leverage multislice image simulations to generate a large and flexible dataset for training the network. The proposed network outperforms state-of-the-art denoising methods on both simulated and experimental test data. Factors contributing to the performance are identified, including (a) the geometry of the images used during training and (b) the size of the network's receptive field. Through a gradient-based analysis, we investigate the mechanisms learned by the network to denoise experimental images. This shows that the network exploits both extended and local information in the noisy measurements, for example, by adapting its filtering approach when it encounters atomic-level defects at the nanoparticle surface. Extensive analysis has been done to characterize the network's ability to correctly predict the exact atomic structure at the nanoparticle surface. Finally, we develop an approach based on the log-likelihood ratio test that provides a quantitative measure of the agreement between the noisy observation and the atomic-level structure in the network-denoised image.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference51 articles.

1. Atomic-resolution Operando and Time-resolved In Situ TEM Imaging of Oxygen Transfer Reactions Catalyzed by CeO2-supported Pt Nanoparticles

2. A Deep Learning Approach to Identify Local Structures in Atomic-Resolution Transmission Electron Microscopy Images

3. NIH Image to ImageJ: 25 years of image analysis

4. Mohan, S , Kadkhodaie, Z , Simoncelli, EP & Fernandez-Granda, C (2020 a). Robust and interpretable blind image denoising via bias-free convolutional neural networks. arXiv:1906.05478 [cs, eess, stat]. Available at http://arxiv.org/abs/1906.05478 (retrieved January 14, 2021).

5. Image Quality Assessment: From Error Visibility to Structural Similarity

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3