Multiple Labeling for EM using Particles of Different Shape and Metal Composition

Author:

Meyer D.A.,Albrecht R.M.

Abstract

Multiple labeling for electron microscopy (EM) is typically accomplished by using colloidal gold (cAu) particles of different sizes. The size distribution of each cAu preparation, which may vary by up to 15%, is the principal factor that limits the number of labels which can be used simultaneously. Furthermore, there is no effective way to use multiple labeling for quantitative, high resolution EM studies. Such analysis requires the use of a single Fab antibody fragment conjugated to a single cAu particle in order to ensure that each particle corresponds to only one antigenic site. Whole antibody molecules cannot be used for quantitative analysis because they are at least divalent, and some, such as dimeric IgA or pentameric IgM, have even more antigen-binding sites. Consequently, it is impossible to deduce whether the presence of one whole antibody molecule corresponds to the presence of one, two, or more targets. Particle diameters ranging from 3 to 5nm are optimal for quantitation because one Fab fragment adsorbs to one particle, more than one Fab fragment may adsorb to a single particle larger than 5nm, and, when smaller than 3nm, several particles may bind to a single Fab fragment.We are evaluating parameters apart from particle size variation to accomplish multiple labeling for both qualitative and quantitative analyses. One method relies on electron energy loss spectroscopy (EELS) to distinguish particles of several metallic compositions, including Au, Ag, Pt, Pd, Rh, and Ru. EELS is performed using a LEO 912 energy filtering transmission electron microscope (EFTEM) with an in-column Omega spectrometer.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference6 articles.

1. Reimer, L. et al., EELSpectroscopy, Oberkochen Carl Zeiss (1992).

2. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3