In SituScanning Electron Microscope (SEM) Observations of Damage and Crack Growth of Shale

Author:

Cui Zhendong,Han Weige

Abstract

AbstractTo better understand the formation and evolution of hierarchical crack networks in shales, observations of microscopic damage, and crack growth were conducted using anin situtensile apparatus inside a scanning electron microscope. An arched specimen with an artificial notch incised into the curved edge was shown to afford effective observation of the damage and crack growth process that occurs during the brittle fracturing of shale. Because this arched specimen design can induce a squeezing effect, reducing the tensile stress concentration at the crack tip, and preventing the brittle shale from unstable fracturing to some extent. Both induced and natural pores and cracks were observed at different scales around the main crack path or on fractured surfaces. Observations indicate that the crack initiation zone develops around the crack tip where tensile stresses are concentrated and micro/nanoscale cracks nucleate. Crack advancement generally occurs by the continuous generation and coalescence of damage zones having intermittent en echelon microscopic cracks located ahead of the crack tips. Mineral anisotropy and pressure build-up around crack tips causes crack kinking, deflection, and branching. Crack growth is often accompanied by the cessation or closure of former branch cracks due to elastic recovery and induced compressive stress. The branching and interactions of cracks form a three-dimensional hierarchical network that includes induced branch cracks having similar paths, as well as natural structures such as nanopores, bedding planes, and microscopic cracks.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3