Author:
Kim Ginam,Sousa Alioscka,Meyers Deborah,Libera Matthew
Abstract
AbstractThe molecular distribution in nanocolloids of poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co-methyl methacrylate co-vinyl acetate) preserved in a frozen aqueous solution was investigated using cryovalence electron energy-loss spectroscopy (EELS) coupled with a scanning transmission electron microscope. Low energy-loss spectra depend upon valence electron structure, and we show that they are substantially different for the PDMS, the copolymer, and the vitrified water studied here. Combining a high efficiency detection system and the use of high-signal low-loss spectra in EELS, we achieved a spatial resolution of 8 nm without serious beam-induced specimen damage in this radiation-sensitive soft-materials system. To obtain quantitative phase maps of silicone and copolymer composition within individual nanoparticles, spectrum datasets were processed via multiple least squares fitting. Quantitative line profiles from the resulting compositional maps indicate that the PDMS lobe of biphasic nanoparticles contained a significant amount of the copolymer and a diffuse interface was formed. Since the nanoparticle synthesis involves polymerization of acrylate monomer dissolved in PDMS nanoparticle precursors, these results suggest that the evolution of the nanocolloid morphology during synthesis is kinetically frozen as the acrylate copolymer achieves some critical molecular weight.
Publisher
Cambridge University Press (CUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献