Author:
Mukherjee Moumita,Samanta Madhupriya,Das Gour P.,Chattopadhyay Kalyan K.
Abstract
AbstractThe drive to replace scarce and expensive Pt-based electrocatalysts for oxygen reduction reaction (ORR) has led to the development of a group of electrocatalysts composed of transition-metal ion centers coordinated with four nitrogen groups (M-N4). Among these, metal phthalocyanines (MPcs), due to low cost of preparation, highly conjugated structure as well as high thermal and chemical stability, have received a great interest. The catalytic activity of MPcs can be improved by employing conducting supports. Here, in this report, we have solvothermally synthesized graphene-supported zinc phthalocyanine nanostructures, and their ORR kinetics and mechanism have been investigated in neutral solution (pH = 7) by using the rotating disk electrode technique. The as-synthesized nanocomposite followed a 4e− reduction pathway. The onset potential (−0.04 V versus Ag/AgCl) found in this work can be comparable with other state-of-the-art material, demonstrating good performance in neutral solution. The fascinating performance leads the nanocomposite material toward future energy applications.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献