Electron-Excited Energy Dispersive X-Ray Spectrometry at High Speed and at High Resolution: Silicon Drift Detectors and Microcalorimeters
-
Published:2006-10-11
Issue:6
Volume:12
Page:527-537
-
ISSN:1431-9276
-
Container-title:Microscopy and Microanalysis
-
language:en
-
Short-container-title:Microsc Microanal
Abstract
Two recent developments in X-ray spectrometer technology provide dramatic improvements in analytical capabilities that impact the frontiers of electron microscopy. Silicon drift detectors (SDD) use the same physics as silicon (lithium) energy dispersive spectrometers [Si(Li) EDS] but differ in design: only 10% of the thickness of the Si(Li) EDS with an anode area below 0.1 mm2and a complex rear surface electrode pattern that creates a lateral internal charge collection field. The SDD equals or betters the Si(Li) EDS in most measures of performance. For output versus input count rate, the SDD exceeds the Si(Li) EDS by a factor of 5 to 10 for the same resolution. This high throughput can benefit analytical measurements that are count limited, such as X-ray mapping and trace measurements. The microcalorimeter EDS determines the X-ray energy by measuring the temperature rise in a metal absorber. Operating at 100 mK, the microcalorimeter EDS achieves resolution of 2–5 eV over a photon energy range of 200 eV to 10 keV in energy dispersive operation, eliminating most peak interference situations and providing high peak-to-background to detect low fluorescence yield peaks. Chemical bonding effects on low energy (<2 keV) peak shapes can be measured.
Publisher
Cambridge University Press (CUP)
Reference23 articles.
1. Newbury, D.E. (2005).X-ray spectrometry and spectrum image mapping at output count ratesabove 100 kHz with a silicon drift detector on a scanning electronmicroscope.Scanning 27,227–239. 2. Struder, L. , Fiorini, C. , Gatti, E. , Hartmann, R. , Holl, P. , Krause, N. , Lechner, P. , Longoni, A. , Lutz, G. , Kemmer, J. , Meidinger, N. , Popp, M. , Soltau, H. , & van Zanthier, C. (1998).High resolution non dispersive X-ray spectroscopy with state of theart silicon detectors.Mikrochim Acta Suppl. 15,11–19. 3. Irwin, K.D. , Hilton, G.C. , Martinis, J.M. , Deiker, S. , Bergren, N.F. , Nam, S.W. , Rudman, D.A. , & Wollman, D.A. (2000).A Mo-Cu superconducting transition-edge microcalorimeter with 4.5 eVenergy resolution at 6 keV.Nucl Instrum Methods Phys Res A 444,184–187. 4. Newbury, D.E. , Wollman, D.A. , Hilton, G.C. , Irwin, K.D. , Bergren, N.F. , Rudman, D.A. , & Martinis, J.M. (2000).The approaching revolution in X-ray microanalysis: Themicrocalorimeter energy dispersive spectrometer.J Radioanal Nucl Chem 244,627–635. 5. Newbury, D.E. , Irwin, K.D. , Hilton, G.C. , Wollman, D.A. , Small, J.A. , & Martinis, J.M. (2005).Electron probe microanalysis with cryogenic detectors. InCryogenic Particle Detection, Ens, C. (Ed.), pp.267–312.Berlin, Heidelberg:Springer.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|