Simultaneous Mechanical Loading and Confocal Reflection Microscopy for Three-Dimensional Microbiomechanical Analysis of Biomaterials and Tissue Constructs

Author:

Voytik-Harbin Sherry L.,Roeder Blayne A.,Sturgis Jennifer E.,Kokini Klod,Robinson J. Paul

Abstract

At present, mechanisms by which specific structural and mechanical properties of the three-dimensional extracellular matrix microenvironment influence cell behavior are not known. Lack of such knowledge precludes formulation of engineered scaffolds or tissue constructs that would deliver specific growth-inductive signals required for improved tissue restoration. This article describes a new mechanical loading–imaging technique that allows investigations of structural–mechanical properties of biomaterials as well as the structural–mechanical basis of cell–scaffold interactions at a microscopic level and in three dimensions. The technique is based upon the integration of a modified, miniature mechanical loading instrument with a confocal microscope. Confocal microscopy is conducted in a reflection and/or fluorescence mode for selective visualization of load-induced changes to the scaffold and any resident cells, while maintaining each specimen in a “live,” fully hydrated state. This innovative technique offers several advantages over current biomechanics methodologies, including simultaneous visualization of scaffold and/or cell microstructure in three dimensions during mechanical loading; quantification of macroscopic mechanical parameters including true stress and strain; and the ability to perform multiple analyses on the same specimen. This technique was used to determine the structural–mechanical properties of three very different biological materials: a reconstituted collagen matrix, a tissue-derived biomaterial, and a tissue construct representing cells and matrix.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3