Applications of Nuclear Techniques, Computer Simulation and Microscopy to Surface Analysis of Materials

Author:

Pacheco de Carvalho J.,Pacheco C.F.R.,Reis A.D.

Abstract

There is a wide range of surface analysis techniques which are, generally, complementary. Nuclear and non-nuclear techniques have been available. Nuclear techniques, which are non-destructive, provide for analysis over a few microns close to the surface of the sample, giving absolute values of concentrations of isotopes and elements. They have been applied in areas such as scientific, technologic, industry, arts and medicine, using MeV ion beams. Nuclear reactions permit tracing of isotopes with high sensitivities. We use ion-ion nuclear reactions, elastic scattering and the energy analysis method where, at a chosen energy of the incident ion beam, an energy spectrum is recorded of ions from nuclear events, coming from several depths in the target. Such spectra are computationally predicted, giving target composition and concentration profile information. A computer program has been developed in this context, mainly for flat targets. The non-flat target situation arises as an extension. Successful applications of the method are given using the 18O(p,α0)15N reaction and elastic scattering of (4He)+ ions. SEM and TEM are used as useful complementary techniques.Two types of samples were prepared containing thick and thin oxides, respectively. The first sample (S1) was obtained by high temperature oxidation of austenitic steel in C 18O2 gas. Weight gain measurements had given a 4.2 μm thick oxide. SEM has shown a reasonably flat oxide (Figure 1 (a)). The second sample (S2, also labelled Al/Al2O3) was obtained by anodization of high purity aluminium at 100V in an aqueous solution of ammonium citrate. An oxide thickness of 0.1370 μm was expected. TEM has given an oxide film thickness of 0.1340 μm (Figure 1 (b)). The 18O(p,α0)15N reaction at Ep=1.78 MeV and 165º was used to analyse sample S1. Figure 2 (a) shows a good computed fit to data. A 18O step concentration profile was found, corresponding to a thick 18O oxide with thickness X1=4.4 μm. Sample S2 was analysed by elastic scattering of α particles at Eα=2.0 MeV and 165º. Figure 2 (b) shows a good computed fit to data. A thin oxide film thickness of X1=0.1350 μm was found, close to the TEM value. The fit also shows a ratio of atomic densities of O and Al slightly above 1.5. The combined use of nuclear techniques, SEM and TEM microscopy has proved to be very important for surface analysis of materials. The reported results would be difficult to obtain by other techniques.Supports from University of Beira Interior and FCT (Fundação para a Ciência e a Tecnologia)/PEst-OE/FIS/UI0524/2011 (Projecto Estratégico-UI524-2011-2012) are acknowledged.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3