Author:
Bell David C.,Russo Christopher J.,Benner Gerd
Abstract
AbstractLowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Ångstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Imaging active topological defects in carbon nanotubes
2. Advantages of low beam energies in a TEM for valence EELS. 16th International Conference on Microscopy of Semiconducting Materials;Stöger-Pollach;Journal of Physics,2010
3. Background, status and future of the Transmission Electron Aberration-corrected Microscope project
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献