High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel

Author:

DeCost Brian L.ORCID,Lei BoORCID,Francis TobyORCID,Holm Elizabeth A.ORCID

Abstract

AbstractWe apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference41 articles.

1. Jégou S , Drozdzal M , Vazquez D , Romero A & Bengio Y (2016). The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, CoRR. Available at http://arxiv.org/abs/1611.09326v2.

2. Bansal A , Chen X , Russell B , Gupta A & Ramanan D (2017). PixelNet: Representation of the pixels, by the pixels, and for the pixels, CoRR. Available at http://arxiv.org/abs/1702.06506v1.

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

4. Watersheds in digital spaces: an efficient algorithm based on immersion simulations

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3