Determining the Volume Expansion at Grain Boundaries Using Extended Energy-Loss Fine Structure Analysis

Author:

Nandi Proloy,Howe James M.

Abstract

AbstractGrain boundaries (GBs) play an important role in material behavior, so considerable effort has gone into determining their structure and properties. Studies of GBs have revealed a correlation between the GB energy and expansion of the planes normal to the GB, or the so-called normal volume expansion. In this investigation, the volume expansion at several GBs was experimentally determined using extended energy-loss fine structure (EXELFS) analysis in a scanning/transmission electron microscope, allowing changes in the nearest-neighbor (n.n.) distances to be determined with nanometer spatial resolution. EXELFS performed on three-model GBs showed that the average n.n. distances at the GBs increased with increasing GB energy. Additionally, the total volume expansion at the GBs, calculated using complementary plasmon energy profiles, showed excellent agreement with volume expansions measured using other experimental techniques. Hence, this study demonstrates that EXELFS is a useful technique to measure the normal volume expansion at GBs. When combined with the results from complementary studies on the same GBs using valence electron energy-loss spectroscopy, this work further shows that the GB energy increases in relation to both the decrease in electron density at the GB and an accompanying increase in specific volume expansion at the GB.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3