Abstract
The position of fatty acids in the TAG molecule (sn-1,sn-2 andsn-3) determines the physical properties of the fat, which affects its absorption, metabolism and distribution into tissues, which may have implications for the risk of CHD. The TAG structure of fats can be manipulated by the process of interesterification, which is of increasing commercial importance, as it can be used to change the physical characteristics of a fat without the generation oftrans-fatty acids. Interesterified fats rich in long-chain SFA are commercially important, but few studies have investigated their health effects. Evidence from animal and human infant studies suggests that TAG structure and interesterification affect digestibility, atherogenicity and fasting lipid levels, with fats containing palmitic and stearic acid in thesn-2 position being better digested and considered to be more atherogenic. However, chronic studies in human adults suggest that TAG structure has no effect on digestibility or fasting lipids. The postprandial effects of fats with differing TAG structure are better characterised but the evidence is inconclusive; it is probable that differences in the physical characteristics of fats resulting from interesterification and changes in TAG structure are key determinants of the level of postprandial lipaemia, rather than the position of fatty acids in the TAG. The present review gives an overview of TAG structure and interesterified palmitic and stearic acid-rich fats, their physical properties and their acute and chronic effects in human adults in relation to CHD.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献