The impact of agricultural biotechnology on supply and land-use

Author:

Barrows Geoffrey,Sexton Steven,Zilberman David

Abstract

AbstractWe use aggregate data to estimate supply, price, land-use, and greenhouse gas impacts of genetically engineered (GE) seed adoption due both to increased yield per hectare (intensive margin) and increased planted area (extensive margin). An adoption model with profitability and risk considerations distinguishes between the two margins, where the intensive margin results from direct ‘gene’ impacts and higher complimentary input use, and the extensive margin reflects the growing range of lands that become profitable with the GE technology. We identify yield increases from cross-country time series variation in GE adoption share within the main GE crops – cotton, corn and soybeans. We find that GE increased yields 34 per cent for cotton, 12 per cent for corn and 3 per cent for soybeans. We then estimate the quantity of extensive margin lands from year-to-year changes in traditional and GE planted area. If all production on the extensive margin is attributed to GE technology, the supply effect of GE increases from 5 per cent to 12 per cent for corn, 15 per cent to 20 per cent for cotton, and 2 per cent to 40 per cent for soybeans, generating significant downward pressure on prices. Finally, we compute ‘saved’ lands and greenhouse gases as the difference between observed hectarage per crop and counterfactual hectarage needed to generate the same output without the yield boost from GE. We find that altogether, GE saved 13 million hectares of land from conversion to agriculture in 2010, and averted emissions are equivalent to roughly one-eighth of the annual emissions from automobiles in the US.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,General Environmental Science,Development

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3