Quantifying successional change and ecological similarity among Cretaceous and modern cold-seep faunas

Author:

Laird Joshua D.,Belanger Christina L.ORCID

Abstract

AbstractAccurately recognizing analogues between fossil and modern ecosystems allows paleoecologists to more fully interpret fossil assemblages and modern ecologists to leverage the fossil record to address long-term ecological and environmental changes. However, this becomes increasingly difficult as taxonomic turnover increases the dissimilarity between ecosystems. Here we use a guild-based approach to compare the ecological similarity of Cretaceous cold-seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages from five previously recognized biofacies. We modify modern assemblage data to include only those taxa with fossilizable hard parts greater than 5 mm in length to make these modern data sets more comparable to potential fossil analogues. We find that while the Black Hills assemblages are more similar in ecological guild composition to the modern thyasirid biofacies, subsets share similarities in ecological structure to the lucinid and mussel-bed biofacies. The fossil seep assemblages are also more similar to one another than are modern assemblages belonging to the same biofacies, despite greater geographic and temporal dissimilarity among the fossil samples. Furthermore, guild-level ordination analyses show a secondary faunal gradient that reflects community succession in the hard substrate–dominated modern assemblages and reveals a parallel faunal gradient in the soft sediment–dominated Cretaceous assemblages, consistent with a gradient in the influence of seep fluids on the faunas. Thus, while the Black Hills assemblages are quite homogeneous in their composition, they capture ecological variation similar to successional patterns in modern seep systems.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3