Peeling fingers in an elastic Hele-Shaw channel

Author:

Fontana João V.ORCID,Cuttle CallumORCID,Pihler-Puzović DragaORCID,Hazel Andrew L.ORCID,Juel AnneORCID

Abstract

Using experiments and a depth-averaged numerical model, we study instabilities of two-phase flows in a Hele-Shaw channel with an elastic upper boundary and a non-uniform cross-section prescribed by initial collapse. Experimentally, we find increasingly complex and unsteady modes of air-finger propagation as the dimensionless bubble speed $Ca$ and level of collapse are increased, including pointed fingers, indented fingers and the feathered modes first identified by Cuttle et al. (J. Fluid Mech., vol. 886, 2020, A20). By introducing a measure of the viscous contribution to finger propagation, we identify a $Ca$ threshold beyond which viscous forces are superseded by elastic effects. Quantitative prediction of this transition between ‘viscous’ and ‘elastic’ reopening regimes across levels of collapse establishes the fidelity of the numerical model. In the viscous regime, we recover the non-monotonic dependence on $Ca$ of the finger pressure, which is characteristic of benchtop models of airway reopening. To explore the elastic regime numerically, we extend the depth-averaged model introduced by Fontana et al. (J. Fluid Mech., vol. 916, 2021, A27) to include an artificial disjoining pressure that prevents the unphysical self-intersection of the interface. Using time simulations, we capture for the first time the majority of experimental finger dynamics, including feathered modes. We show that these disordered states evolve continually, with no evidence of convergence to steady or periodic states. We find that the steady bifurcation structure satisfactorily predicts the bubble pressure as a function of $Ca$ , but that it does not provide sufficient information to predict the transition to unsteady dynamics that appears strongly nonlinear.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3