Stationary dimpled drops under linear flow

Author:

Malik SumitORCID,Lavrenteva Olga M.ORCID,Idan MosheORCID,Nir AvinoamORCID

Abstract

The axially symmetric deformation of a drop in a viscous fluid, under the influence of an externally imposed flow having simultaneous rotating and compressional or extensional components, is addressed. In the previous studies, two families of stationary drop shapes were constructed by simulating the dynamics of drop deformation: stable singly connected shapes with respect to axisymmetric disturbances, and unstable toroidal shapes. These two branches coexist at the same flow conditions, but were not connected. In this study, we obtain a new family of branches of unstable highly deformed stationary drops connecting with the stable flattened shapes and the toroidal ones. We use a method based on classical control theory. The controller is designed for a two-state dynamic model of the system and is employed on a high-order nonlinear dynamic model of the drop deformation. Through this feedback-control-centred approach, an extended collection of unstable stationary solutions is constructed, which spans the range from the loss of stability to the dimpled shapes almost collapsed at the centre. In the latter region, which was never obtained in previous studies, a multiplicity of solutions is identified.

Funder

Israel Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3