Rotor aeroacoustic response to an axisymmetric turbulent boundary layer

Author:

Zhou Di,Wang Kan,Wang MengORCID

Abstract

The acoustic response of a five-bladed rotor to an axisymmetric turbulent boundary layer at the tail end of a body of revolution (BOR) is investigated numerically to elucidate the physical sources of acoustics, particularly the role of coherent structures in sound generation. The BOR is at a length-based Reynolds number of $1.9 \times 10^6$ and free-stream Mach number of 0.059. Two rotor advance ratios, $1.44$ and $1.13$ , are considered. The turbulent boundary layer on the nose and midsection of the BOR is computed using wall-modelled large-eddy simulation, whereas that in the acoustically important tail-cone section is wall-resolved. The radiated acoustic field is calculated using the Ffowcs Williams–Hawkings equation. The computed flow statistics and sound pressure spectra agree well with the experimental measurements at Virginia Tech. In addition to broadband turbulence-ingestion noise, spectral humps near multiples of the blade-passing frequency and accompanying valleys are captured. They are shown to be caused by correlated blade unsteady-loading dipole sources and their constructive and destructive interference as a result of successive blades cutting through the same coherent structures. The latter undergo rapid growth in the decelerating tail-cone boundary layer before their interaction with the rotor. The acoustic radiation is dominated by the outer region of the blade owing to a combination of larger blade chord-length, inflow turbulence intensity and blade speed. The numerical results also correctly predict the effect of the rotor advance ratio on the acoustic field. A mixed free-stream/convection Mach-number scaling successfully collapses the sound pressure spectra at the two advance ratios.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3